
Transforming Software Delivery:
An IBM Rational Case Study
Stephanie Trunzo
Krista Meyer

2

Transforming Software Delivery: An IBM Rational Case Study

Contents

Preface 3

I. We Needed To Change 4

The challenges – Rational’s, the industry’s, and our
customers’ 4

Our approach 5

What is Measured Improvement? 5

1. Improve team collaboration 6

2. Embrace agile practices 6

3. Gain development intelligence 7

II. Lessons Learned 13

Start with Measured Improvement (MI) assessment and
objective definition 13

Complete a portfolio analysis to determine where
changes are of value 14

Work with an end-goal in mind 15

Refine organizing principals 15

Manage the culture change intentionally and persistently 16

Manage expectations and scope 16

Build a parallel walk process for all changes 17

III. Our Measurable Results 18

To Table of Contents

3

Transforming Software Delivery: An IBM Rational Case Study

Preface
The IBM Rational® software development
organization consists of more than 2000 analysts,
architects, project managers, developers, and quality
professionals distributed over 15 locations on six
continents. Our mission is to ensure the success of
our customers through the development of a robust
portfolio of software and systems delivery products.
We create and maintain 57 product families that
span distributed, System z®, and Power® operating
environments.

For both years 2009 and 2010, IBM was the
onlyvendor ranked “Strong Positive” by Gartner in its
biannual ALM MarketScope report. Earning this
distinction hasn’t always been easy. In fact, in
January 2007, the Rational development
organization was forced to undertake a journey of
self-reflection and improvement, an odyssey that
resulted in a fundamental transformation of our
teams and development processes over a two-year
period. This is the story of that journey.

To Table of Contents

4

Transforming Software Delivery: An IBM Rational Case Study

I. We Needed To Change
In 2007, the IBM Rational Development organization
realized that they needed to make improvements in
their development lifecycle. Just a glance at our
existing metrics and internal targets made it clear
that Rational need to improve:

not-as-flexible processes such as waterfall and
classic iterative software development methodolo-
gies to an agile process, with a specific focus on
measuring the improvements.

We were behind on several of our goals. Some were
more off-track than others, but across the board, we
clearly needed to take significant steps toward
improving our business and our customers’ satisfac-
tion. So we decided to move from entrenched,

The challenges – Rational’s, the industry’s, and
our customers’
Ironically, our own challenges echoed those we had
so often heard about at customer sites. At the time,
our development teams operated in silos, each with

their own culture, tools, and processes, due to the
sheer breadth of the Rational workforce and product
spectrum, as well as the evolving toolsets within
Rational’s organic product portfolio. Many teams had
their own “home grown” tools, and acquisitions of
new companies and teams made for a less-than-
cohesive workforce. There was little collaboration
between existing teams on their own internal
projects, and even less on projects across domains
such development, testing, and support teams.

The IBM Rational organization is not alone in facing
these challenges. Companies of all kinds suffer from
these problems, causing communication to break
down. Errors occur. Profits are lowered. Costs
overrun. Outsourced projects under perform.
Schedules fail to be met. And business is significant-
ly impeded. Recent surveys point out just how bad
this problem has become:

•	 52% of users don’t have confidence in their
information (CHAOS Chronicles v12.3.9, The
Standish Group, June 30, 2008. Airbus from
Business Week -- http://yahoo.businessweek.
com/globalbiz/content/oct2006/
gb20061005_846432.htm)

•	 “When we ask clients what level of service they
are currently at, over 90% have no metrics to
define it!” - James Hall, Managing Partner,
Accenture

Metrics – Rational 2006 / 2007
Note: Goals are either internal IBM statistics or industry benchmarks.

To Table of Contents

http://yahoo.businessweek.com/globalbiz/content/oct2006/gb20061005_846432.htm
http://yahoo.businessweek.com/globalbiz/content/oct2006/gb20061005_846432.htm
http://yahoo.businessweek.com/globalbiz/content/oct2006/gb20061005_846432.htm

5

Transforming Software Delivery: An IBM Rational Case Study

•	 “90% of employees are looking to make improve-
ments through increased metrics, but almost all
of them lack clear metrics and become confused,
frustrated and emotionally disengaged.” - Towers
Perrin Study 2008

Our approach
Given these challenges, we approached the transfor-
mation from two coordinated fronts: agility and
measurement.

The first focus was to drive a comprehensive analysis
and shift in the development process to what
Rational calls “agility@scale.” It’s an approach to
scaling agile practices to larger, more distributed
development teams in order to improve software
development efficiency, lower development costs,
and, ultimately, improve customer satisfaction.

The second focus was to determine our business
goals and very intentionally measure improvement
toward those goals. Not only did we need to drive
our organization toward a more agile approach, we
had to measure the effectiveness of the effort. We
needed to get to a higher level of development
intelligence, driving top-down views of overall project
health across the portfolio based on bottom-up,
on-demand data.

To support our measured improvement objectives,
we embarked upon a project called the Executive
Dashboard, built on Rational Insight. This project
encompassed both the technical aspect of develop-

ing the dashboard as well as the cultural changes
that necessarily accompany any adoption of mea-
surement in the work environment.

What is Measured Improvement?
We know that many projects fail to meet stakeholder needs, yet a vast majority have no structured
method for improving.

Measured Improvement is an approach for continuous and quantifiable improvement in software and
systems delivery. It offers a pragmatic, consumable, structured, and scalable approach to software
capability improvement by guiding teams in the effective use of products, services, practices,
metrics, and related aids within the software delivery lifecycle. This improvement approach delivers
business value in many dimensions, such as cost savings, better quality, earlier time to market, more
predictable delivery, and increased market share.

Measured Improvement enables organizations to:

•	 Understand and document the causal relationships between practices and outcomes, thus in-
creasing the likelihood of reaching those outcomes.

•	 Explore the above correlations to identify improvements that are likely to bring the largest return on
investment.

•	 Accelerate adoption of target practices and tools, thus enabling organizations to rapidly realize
desired outcomes.

•	 Set up a measurement system to determine whether desired outcomes are reached, and whether
target practices have been adopted. The measurement system enables corrective actions to be
taken when desired results are not reached. It also enables calibration of our documentation of
correlation between outcomes and practices.

To Table of Contents

6

Transforming Software Delivery: An IBM Rational Case Study

The IBM Rational team embarked on its Measured
Improvement initiative by identifying business goals
and setting priorities using our own software portfolio.
At first glance, we already had an overwhelming mass
of data; however, we needed to step back from the
data and assess our business objectives as a way to
define the proper measurements. What should be
tracked and why? What did we need to improve? We
started with a few key business objectives:

•	 Increase revenue
•	 Improve profit margin
•	 Increase market share

These led to four tentative operational objectives (we
would revise them later) to support the above:

•	 Improving productivity / reduce cost
•	 Improving quality (business alignment,

consumability, as well as code quality)
•	 Improve predictability
•	 Operate transparently across multiple software

development disciplines

Taking these operational objectives into consideration,
we agreed on three major areas for improvement
where we could 1) measure results and 2) assess the
impact of those results against the defined objectives.

These were:

 – Improve team collaboration
 – Embrace agile practices
 – Gain development intelligence

1. Improve team collaboration
Bringing together dispersed global teams working on
any software delivery project is always a significant
challenge. It all boils down to collaboration. This
transformation wasn’t going to happen if we main-
tained our distant silos and poor communication
habits. We already had tools to bring large teams
together, whether that meant team members sharing
our immediate office space, or sitting on the other
side of the globe. With Rational Requirements
Composer, Rational Team Concert, and Rational
Quality Manager – our turnkey collaborative lifecycle
management solution -- we aligned our business,
development, and test teams to form a truly collab-
orative lifecycle management environment.

RSS feeds from Rational Requirements Composer,
Rational Team Concert™, and Rational Quality
Manager informed individual users, teams and teams
of teams of project changes as they happened,
allowing a constant and consistent method for
working toward end goals. This helped to drive better
collaboration across domains while assisting the
internal adoption of Rational Requirements
Composer, Rational Team Concert, and Rational

Quality Manager. Our own solutions were used to
enable streamlined access to assets, notifications,
reporting and tracking.

We focused on scenario development, and cross-
functional teams to provide more holistic views of our
efforts. This made transformation more continuous,
made it clear what was important to us, increased
awareness, and helped us improve best practices.
Collaborative lifecycle management stakeholders,
product managers, developers, and testers were all
able to work as an integrated team while enhancing
the transformation to agile.

2. Embrace agile practices
As we examined the challenges of transforming from
a waterfall methodology to an agile development
methodology, we realized that agility@scale was not
something we would accomplish overnight.

Realistically speaking, we knew that not all of our
teams needed to move to an agile approach. Water-
fall, iterative, and agile development techniques all
have different driving engines at their core. With 60+
products in the IBM Rational portfolio and with the
many projects associated with them currently using a
variety of development methodologies, the first task
was to identify which projects needed to become
agile through specific analysis of the portfolio. Several
projects and teams were doing quite well using water-
fall and iterative development methodologies, based
on the needs of their project.

To Table of Contents

7

Transforming Software Delivery: An IBM Rational Case Study

For the projects we determined would move toward
agile transformation, we identified three major areas of
focus:

•	 Collaboration -- One of our major goals, and a key
benefit of agile methods

•	 Automation -- A major tenet of the Rational proposi-
tion to the world, we needed to embrace this
ourselves.

•	 Reporting -- The essential, objective capability if we
were to measure success.

3. Gain development intelligence
“Development intelligence” is what you gain by taking
reporting to the next level. After we shifted the
portfolio to the development model that best fit
methodology, we were ready for this step. We knew
we had many different kinds of projects, and they
needed to be measured differently. There are different
criteria used to measure success in waterfall, iterative
and agile development methods. For example, where
waterfall looks at functional, build, and integration
verification testing, agile teams do iterations, retro-
spectives, defect burndown charts, and look at
velocity. Although the projects had different measures
for success, we needed to be able to normalize them
to assess our portfolio of projects.

The first step in that process was to revise our original
set of business and operational objectives we needed
to measure. From the original key business objec-
tives, we created four new supporting operational
objectives:

•	 Business Health – focuses on financial, sales, and
enablement measurements

•	 Perceived Quality – provides scores highlighting the
customer view

•	 Development Health – includes software develop-
ment project metrics

•	 Development Quality – scores indicating code and
product quality

Agility Scaling Factors
In a study IBM conducted with Dr. Dobbs Journal, we determined that agile projects were successful 80% of the time when the criteria on
the left sides of the arrows applied (see figure above). Projects were successful only 20% of the time when the criteria on the right sides of
the arrows applied. As most of the projects and products in our Rational portfolio included several of the criteria to the right sides of the
arrows, we found ways to bridge the gaps using our own collaboration technologies and CLM software.

To Table of Contents

8

Transforming Software Delivery: An IBM Rational Case Study

Each of these operational objectives were further
supported by individual underlying metrics that each
rolled up to form composite scores. The initial set of
metrics looked like this:

Business Health, Perceived Quality, Development
Health, and Development Quality were then combined
to form an Improve Health overall score. Improve
Health was represented overall by an green, yellow, or

red indicator for each product and release in the IBM
Rational product portfolio, which provided a quick
way for stakeholders to assess status at any time with
up-to-date information collected from multiple
sources.

Once the list of metrics was defined, we began work
on the Executive Dashboard, using our own
measurement product, IBM Rational Insight.

The Executive Dashboard is built on top of the IBM
Rational Insight data warehouse. Software
development artifacts are collected from products
using standard Insight integrations. Metrics are
defined and calculated using the artifacts stored in
the Insight data warehouse, which allows the same
types of artifacts collected from different tools to feed
into common metrics definitions -- i.e., requirements
test coverage can use requirements from Rational
RequisitePro, Rational ClearQuest®, or Rational Team
Concert and can use test cases from Rational
TestManager, ClearQuest Test Manager, or Rational
Quality Manager. Insight is built on Cognos® tools
that include:

•	 A framework manager for defining the reporting
model, allowing business users (in addition to
database administrators) to create reports

•	 A business intelligence server for creating and
running reports

•	 A data manager for extracting, transforming and
loading data

Business Health, Perceived Quality, Development Health, and Development Quality were then combined to form an Improve Health
overall score. Improve Health was represented overall by an green, yellow, or red indicator for each product and release in the IBM
Rational product portfolio, which provided a quick way for stakeholders to assess status at any time with up-to-date information collected
from multiple sources.

To Table of Contents

9

Transforming Software Delivery: An IBM Rational Case Study

The completed Improve Health scorecard is shown in
the screen capture capture to the left.

Note: We have altered data on these screen captures
to avoid revealing sensitive business information.

Using composite formulas allowed us to add and
adjust metrics as we shifted where we needed to
improve; we used Measured Improvement to steer
the selection and definition of the chosen metrics to
further leverage a proven approach for continuous
and quantifiable improvement in software and sys-
tems delivery.

The use of composite, weighted scoring also allowed
the flexibility to accommodate the Rational organiza-
tion’s wide portfolio of projects, and throughout
various stages of agile transformation. The nested
aspect of the metric and report design also allows
different stakeholders to drill down into more detailed
information (e.g., a specific metric score like Defect
Backlog for a particular product and release), and
then back up again to see the bigger picture through
the composite scores compared across multiple
segments, products, or releases.

To Table of Contents

10

Transforming Software Delivery: An IBM Rational Case Study

In addition to scorecard views, the Executive
Dashboard also utilized bubble charts to ease viewing
and comparison of different projects in the portfolio.

This view above is a scatter chart visualizing data on
four key aspects, as follows:

•	 Schedule (y-axis). Demonstrates variance to begin
to illustrate some measure of predictability.

•	 Completion (x-axis). Projects are organized by

percent complete, allowing executives to focus on
projects nearing completion.

•	 Project health (bubble color). A score card is used
to assess project health based on 12 factors.

•	 Resource (bubble size). Provides executives with
the ability to pay attention to the projects
consuming the most resources.

The power of the chart lies in the visual immediacy of
the four factors shown together, which allows an
executive to gain an overall sense of all of the projects

being tracked at one glance, and also to easily
identify projects in the “red zone” based on a
threshold curve overlaid on the chart. With almost no
analysis time, an executive can identify -- and begin
to drill down into detail on -- troubled projects,
confident that the exception path is built on accurate
and live data.

Another high level design benefit that came out of our
development intelligence work was a distinction
between solution views and product views. It was
important to understand how individual projects were
performing, but we also needed to remove the silos
from the measurements and look at how they were
interacting for customer value in a given solution. For
example, each project might be green in all measures,
but in a combined solution, they might be yellow
based on additional solution-level metrics, such as
schedule synchronicity or integration quality.

To gain accurate development intelligence, the agility
of measurement needs to match agility of
development. Although we started with a set of core
business objectives, we all know that the industry shifts with
changes in market opportunities and business climate. So
during subsequent iterations of the Executive
Dashboard, we’ve evolved our metrics, weights,
reports, and scorecards to keep pace with the
lessons learned as we reviewed and used the data.

To Table of Contents

Transforming Software Delivery: An IBM Rational Case Study

For example, in the Business Health scorecard, the
measures Revenue, Pipeline, and Multiplier had
originally been weighted equally, but after using the
Executive Dashboard for a few months, we realized
we needed to weight Revenue more heavily because
of natural flux in the predictability of the other two
scores.

Another example is the bubble chart. In earlier
iterations, we included a metric for schedule variance
in the dashboard reports. This metric was intended to
impact the placement of the bubbles so that you
could visually understand whether a high variance in
schedule was impacting the project’s overall health, in
combination with other factors.

Although the schedule variance metric was useful
during the proof-of-concept phase for the reports, it
did not ultimately offer any value in the bubble chart.
When real data was provided for the metric, the
bubbles on the y-axis always hovered near 0%
schedule variance. In reality, the stakeholders did not
move the schedule dates very often.

11

To Table of Contents

12

Transforming Software Delivery: An IBM Rational Case Study

In the next iteration, we removed the schedule
variance metric. In its place, we used a metric on the
y-axis to represent schedule risk. This metric takes
into account a development schedule and how far off
track stakeholders are at any given point in the
release. This newer data is used to evaluate a higher
level of risk to on-time delivery as the project nears
completion. (In essence, the tolerance for schedule
variance should be lower as you get closer to eGA.)

By applying agile development methods to the
Executive Dashboard project, we were able to collect
data for metrics deemed necessary by stakeholders,
put real data behind those metrics, and enable
stakeholders to determine their usefulness. Plus, we
still had many more iterations before project
completion, which would ensure that the metrics we
tracked and displayed provided valuable information
to stakeholders.

To Table of Contents

13

Transforming Software Delivery: An IBM Rational Case Study

II. Lessons Learned
As we worked over the past four years to change the
course of our development organization, we often
wished we could achieve our goals by simply
adopting new processes or tool sets; however, true
transformation is a journey, with multiple outcomes in
the process, and there were a number of lessons
learned about how to manage this kind of change in
an organization.

No two teams made the switch to agility and
development intelligence in the same way, because
no two teams are exactly the same. There is no
one-size-fits-all, out-of-the box suite of tools that can
move any team or project from entrenched systems
and processes into an agile, measured environment.
Development teams are made up of people, goals,
compositions, markets -- i.e., development teams are
each unique, and plans to manage a transformation
should be adapted to each team’s needs.

We were, however, able to develop repeatable
guidelines that guided our various teams to a more
unified, systematic, consistent, and measured way of
working:

•	 Start with Measured Improvement assessment and
objective definition

•	 Complete a portfolio analysis to determine where
changes are of value

•	 Work with an end-goal in mind

•	 Refine organizing principals, staying agile while
transforming to agile

•	 Manage the culture change intentionally and
persistently

•	 Manage expectations and scope
•	 Build a parallel walk process for all changes

Each of these guidelines is explained below.

Start with Measured Improvement (MI)
assessment	and	objective	definition
You do not begin a journey without a sense of where
it should take you. Likewise, if you want to solve
business challenges, you need to understand your
business objectives. Being able to define a clear
assessment of the current situation (where we are) as

well as the ideal goal (where we want to be) requires
constant measurement to make sure we are on the
right path to transformation.

At the beginning of the Executive Dashboard project,
understanding what to measure was just as elusive as
how to measure it accurately. With different inputs,
inconsistent definitions, and volumes of information
across various product lines and project teams,
learning how to distinguish between “signal and
noise” required a lot of manual time to collect and,
most importantly, interpret the data. How would we
know that we were measuring the right things and
setting objectives correctly? How would we know
success when we achieve it?

To Table of Contents

14

Transforming Software Delivery: An IBM Rational Case Study

We looked at several criteria over our own portfolio
while pushing for the agile transformation, and we
allowed those criteria to evolve based on the
business objectives, not historical precedents. All of
the measurements were then tested and visualized
based on data reporting from our own software. The
Measured Improvement approach allowed us to act,
then assess, and finally steer projects and teams to
an agile transformation. We were able to validate
that the data being collected was giving us the
intelligence we needed to succeed.

Complete a portfolio analysis to determine
where changes are of value
We knew that our transformation to agility was going
to be selective. Our goal was not to move all of our
teams to an agile model, but rather to determine the
best candidates for agility and the make the right fits.

We determined to look deeply within our organization
and use a set of criteria to determine candidates for agile
methods, and make the conscious decision that other
teams are already operating in a model that is appropriate
for them. Here is partial set of criteria for determining who
should be agile, and who should not be:

Disciplined agile teams:
•	 Produce working software on a regular

basis.
•	 Do continuous regression testing, and

better yet take a Test-Driven Development
(TDD) approach.

•	 Work closely with their stakeholders, ideally
on a daily basis.

•	 Are self-organizing and work within an
appropriate governance framework.

•	 Regularly reflect on, and measure, how
they work together and then act to improve
on their findings in a timely manner.

Agile is not applicable when:
•	 The culture of the organization is the

primary determinant.
•	 Potential cultural pitfalls exist:

 – Waterfall culture
 – Low-trust environment
 – Unwillingness to change

•	 It’s very expensive to redeploy the system.
•	 There are significant dependencies on new

hardware development.
•	 Teams are doing a good job with non-agile

approaches.

Selecting the Right Approach

To Table of Contents

15

Transforming Software Delivery: An IBM Rational Case Study

To Table of Contents

We determined there was a set of products and projects
that agile methods were not likely to improve. For
example, doing iterative development when a product
was in maintenance mode and required very little
stakeholder feedback would not be worth the cost of
change. Although trying to create usable, incremental
code is always a good thing, going all the way to agile
did not apply globally throughout our portfolio.

Work with an end-goal in mind
The fact that a full development intelligence dashboard
was the end goal did not mean it should be the last step.
Our workloads and the complexity of the transformation
meant that planning one change at a time, in a linear
path, may have seemed wise. However, identifying the
eventual business outcomes we wanted to achieve had
to inform all of our choices. Otherwise, we would risk
making isolated choices along the way and eventually
being forced to retrofit processes and tool usage to be
able to measure properly. From the beginning, we set
goals to provide traceability from business objectives in
our transformation to specific practices and metrics.
We layered our approaches and tools with specific
development intelligence goals in mind. Our
measurements could then tell us if we were on the right
track as we moved forward in our transformation.

We set end goal targets to improve the business using
our own agile transformation practices and IBM Rational
software. With real, standardized measurements across
a carefully chosen set of reporting metrics, we were able
to see substantial improvement toward our end-goals.

Refine	organizing	principals
We also learned things about the metrics we used as we progressed on our plans to transform our business,
which meant iterating on our composites and formulas. In other words, we needed to be agile about how we
measured our transformation to agility.

Agile governance means managing uncertainty and variance. Processes, goals, duration, scope,
plans, features, and quality will all almost certainly change along the way in an agile environment.
Here are a few related principles and corresponding illustrations:

16

Transforming Software Delivery: An IBM Rational Case Study

To Table of Contents

As we worked toward our end goals, we learned that
our ways of interpreting and understanding our data
was evolving. Insights grew keener. We were able to
glean from our measurements a deeper insight to
better understand what was cause and what was
effect, and where we should focus our time refining
processes and measurements.

Our Executive Dashboard model alerted process and
project owners to issues, helping them set acceptable
performance levels and manage by exception when
attention was required. We drilled into the root causes
of issues, so we could put mitigations into place, as
well as analyze those root causes to drive the next
round of continuous process improvement.

Manage the culture change intentionally and
persistently
Across a team as large as the Rational organization,
changing entrenched methods of working and
combating the familiarity of old processes and tools is
a tough challenge. The reporting mechanisms we put
in place became a forcing function of the culture
change. It is important to remember that this kind of
change will not just happen on its own; you need to
force the change, but gently. We weren’t just deploy-
ing a new system; we were transforming the way we
do business.

Adjusting how you measure success can be a source
of anxiety for people on multiple levels. The people
involved may feel their value is attached to current

process. Are they being replaced by a dashboard?
We had to manage this culture change by underscor-
ing all of the new ways people would be able to
demonstrate value.

We addressed this in two ways. First, we added the
ability for leaders to use a more subjective expert
assessment of health. By allowing an intuitive, gut-feel
score to be manually entered into the overall health
composite, we gave the experts a voice that was
needed to ease the transition, aid us in testing our
evolving metrics, and also capture the qualitative,
softer aspects of running the business that data alone
will not provide. Second, we realized that the intro-
duction of data-driven reporting can initially feel harsh
to those used to subjective reporting. Being exposed
to the truth can hurt, and we spent a lot of time
explaining thresholds and red statuses to the project
owners. The most important lesson here is to change
the culture to see that red is not necessarily a bad
thing; a red item might mean that you effectively
shifted resourced to turn something else green based
on priorities, for example. We worked to subtly shift
the “Why am I red?” reaction. The response to a red
item on a dashboard is not to immediately wonder
how to turn it green by tricking the metrics, but rather
to understand the underlying data and what actions
need to be taken at a business or development level
to effectively improve. There is a subtle but critical
distinction between statically reporting status, and
dynamically analyzing project health data.

Manage expectations and scope
At the start of any big transformation, people get
excited. They want to see everything happen at once,
so we had to learn to manage expectations and
scope. We started by selecting the teams who would
make the transition to an agile approach, and we
worked with them directly to build appropriate plans
and timelines. We also learned in our Executive
Dashboard project that what works in a proof of
concept will not necessarily work in production.
Sample data is not real data, and you must allow
ample time to bring your concept to reality. When you
demonstrate proof of concepts, something that
appears to work will lead people to expect that it
does; so setting clear expectations from the start is
critical to the overall perceptions of your progress.

It is difficult to become more flexible overall, especially
in transforming to a more agile culture. Development
communities often expect up-front plans and designs
and work toward a set schedule, or firm vision.
However, iterative development and Measured
Improvement are both based on continued monitoring
and adjustment. You should manage the scope of
change by picking a few key metrics to represent
each key functional area to start. Get those working
completely and validly first, and avoid boiling the
ocean. Then, iterate and evolve your measurement
agilely, to match the agility of your development
teams. Understanding that change is simply part of
the expected process can help ease some of the
initial anxiety and tension.

17

Transforming Software Delivery: An IBM Rational Case Study

Build a parallel walk process for all changes
As much as we might have preferred to stop time for
months as we transformed our business, that was not
possible. We had to manage this transformation in
parallel while continuing business as usual. We knew
that the transformation was going to take some time,
and continuing our current process would be
essential. We adopted a crawl-walk-run model, where
for every aspect of the transformation, you need to
ensure you build in a parallel walk process to allow
existing operations to continue while you slowly
convert to the run stage.

We addressed this for our agile transformation by
looking for sensible points in the release cycle on a
team-by-team basis to begin moving to the newer
model, and we chose the appropriate agile practices
to put in place based on the team’s needs.

New projects were started with the new measurement
processes in place upon project inception. Other
projects were transitioned over time, with a parallel
period of collecting both manual and automated
measurements. And for many, mostly legacy
projects, we determined that data entry and metrics
would remain primarily manual processes.

This walk phase retained a certain comfort level for
the stakeholders, addressed the practical aspects of
needing to continue to run the business as we built

the dashboard, and allowed stakeholders to grow comfortable with the new metrics and dashboard front-end
while we iteratively added more and more value through data automation.

To Table of Contents

18

Transforming Software Delivery: An IBM Rational Case Study

To Table of Contents

III. Our Measurable Results
Although this transformation cost time and effort, it
has yielded results in terms of real, measurable
improvements to our business. Not coincidentally,
these results have helped us achieve a 48% increase
in revenue per headcount over the last three years. At
the same time, we are doing more with less; head-
count per project has gone down more than 50%
since our transformation began.

The chances of major architectural changes late in a
lifecycle of a release have diminished significantly with
our new agile model. Stakeholders and teams are
comfortably working with change all the way through
the project, reviewing measurement data to stay on
course toward the business and project goals, so
unanticipated surprises are far less likely.

We have evolved from an organization that was doing
iterative or agile development in approximately 5% of
its projects in 2007 to 80% in 2010. We are doing
more with less, facilitating faster processes, launching
higher quality releases, getting to market faster ,
releasing products that better reflect real customer
needs, and getting better at predicting where we’ll be
based on our ability to proactively adjust and steer
our course.

19

Transforming Software Delivery: An IBM Rational Case Study

© Copyright IBM Corporation 2011

IBM Global Services
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
January 2011
All Rights Reserved

IBM, the IBM logo, ibm.com, Smarter Planet, the Smarter
Planet logo, ClearQuest, Cognos, Power, Rational, Rational
Team Concert, and System z are trademarks or registered
trademarks of International Business Machines Corporation
in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (®
or ™), these symbols indicate U.S. registered or common
law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and
trademark information” at ibm.com/legal/copytrade.shtml

Other product and service names might be trademarks of
IBM or other companies.

npsaund
Typewritten Text

npsaund
Typewritten Text

npsaund
Typewritten Text

npsaund
Typewritten Text
RAO14014-USEN-01

